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Equations for determining the frequency band near the frequency of selective reflectionless transmission of
electromagnetic radiation by a layer of an absorbing dielectric which separates two nonabsorbing media with
dissimilar optical densities have been obtained. The absorption band of the wave in the dielectric layer as a
function of the dielectric properties and thickness of the layer and of the dielectric properties of the separated
media has been evaluated.

The conditions of occurrence and the region of existence of the reflectionless transmission of electromagnetic
radiation by a plane layer of an absorbing dielectric which separates two semiinfinite nonabsorbing media have been
found in [1]. One important characteristic of such selective transmission of a wave by the absorbing layer is a fre-
quency band within which the reflection of the wave is minimum and does not exceed the prescribed allowable value.
Evaluation of the frequency band and of its dependence on the thickness of the layer and its dielectric properties and
on the properties of the media adjacent to the layer are of practical significance in creating narrow-band absorbing op-
tical and microwave devices.

To determine the band of selective transmission of electromagnetic radiation by an absorbing layer we con-
sider the problem of reflection of a plane-parallel electromagnetic wave incident perpendicularly on a plane absorbing-
dielectric layer adjustable for thickness; the absorbing dielectric separates two semiinfinite nonabsorbing media with
dissimilar optical densities. The substance of the absorbing layer has the complex value of the permittivity ε =
ε′ − iε′′ , while the media adjacent to it have permittivities ε1 and ε2 respectively. In the case of incidence of the wave
from the medium with a value ε1, the complex value of the coefficient of reflection of the wave from the two-layer
system consisting of the absorbing layer and the medium with a value ε2 is equal to

ρ
.
 = 

Zin − Z1

Zin + Z1
 , (1)

where Zin = Z 
Z2 + Z tanh γl

Z + Z2 tanh γl
 is the input resistance of the two-layer system; γ = i 

2π
λ

 √ ε  [2].

We introduce the notation x = l ⁄ λd and allow for the known expressions for the relationship between the di-
electric and optical properties of dielectrics

ε′ = n
2
 (1 − y

2) ,   ε′′  = 2n
2
y ,   ε1 = n1

2
 ,   ε2 = n2

2
 , (2)

where y = tan 
δ
2

, δ = arctan 
ε′′

ε′
.

We assume that

tanh 0.5 (α1 + iβ1) = 
Z1

Z
 ,   tanh 0.5 (α2 + iβ2) = 

Z2

Z
 . (3)

Since Zn(i − iy) = Z1n1 = Z2n2 = Z0, we have
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2nn2y

n
2
 (1 + y

2) − n2
2 ,   r2 = √ (n2 − n)2

 + (ny)2

(n2 + n)2
 + (ny)2  ,

(4)

where r1, β1, r2, and β2 are, respectively, the moduli and phases of the coefficients of reflection of the wave from the
boundary of the absorbing layer with the first and the second media adjacent to it.

We represent the expression for the input resistance of the two-layer system Zin in the following reduced
form:

Zin = Z1 (E + iF) = tanh (ϕ1 + iϕ2) , (5)

where ϕ1 = 2πxy + α2 and ϕ2 = 2πx + β2. The real and imaginary parts of the reduced input resistance of the system
will be equal, respectively, to

E = 
n1

n (1 + y
2)

 
sinh 2ϕ1 − y sin 2ϕ2

cosh 2ϕ1 + cos 2ϕ2

 ,   F = 
n1

n (1 + y
2)

 
y sinh 2ϕ1 + sin 2ϕ2

cosh 2ϕ1 + cos 2ϕ2

 . (6)

The reflectionless transmission of electromagnetic radiation by the absorbing layer corresponds to the condi-
tions ρ

.
 = 0, Zin = Z1, E = 1, and F = 0 with allowance for which from Eqs. (6) it follows that

n (1 + y
2)

n1
 = tanh ϕ1 − y tan ϕ2 , (7)

y sinh 2ϕ1 + sin 2ϕ2 = 0 . (8)

The dependence of the modulus of the reflection coefficient of the wave ρ on the thickness of the absorbing
layer l of the system in question represents an oscillating and decaying curve. Therefore, it may be assumed that the
reflectionless transmission of the wave will occur when the layer thickness corresponds to one minimum of the func-
tion ρ(l) but on condition that the quantity ρ at this minimum reaches its zero value. It is assumed that any of the
minima of ρ, including the zero minimum mentioned, is realized when the layer thicknesses are equal to

x = 
l

λd
 = 

ln
λ

 = 
(2N − 1)

4
 + ∆ , (9)

where N is the number of the zero minimum of the function ρ(l) and ∆ is a small but nonzero quantity dependent on
the number of the minimum and on the dielectric properties of the coating and the substrate.

From simultaneous solution of Eqs. (7) and (8) with account for relation (9) and expressions (4) we have

π (2N − 1) + 4π∆ = 
1

y
 ln 

r2

r1
 , (10)

where

∆ = 
1

4π
 [β1 − β2] . (11)

Equation (10) determines functional relationships between such selective values of n, n1, n2, and y and conse-
quently, in accordance with Eqs. (2), also between ε′, ε′′ , ε1, and ε2 for which the conditions of existence of the re-
flectionless transmission of the wave by the absorbing layer are fulfilled. The necessary thickness of the layer is
determined from Eqs. (9) and (11).
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To determine the wavelength band ∆λ within which the value of ρ is nonzero and does not exceed a certain
quantity ρb we will assume that the boundary value ρb is low and the dielectric properties of the absorbing layer and
of the media adjacent to it do not change with frequency. Then, as has been shown in [3], the wavelength band ∆λ
near the obtained selective wavelength λ will be determined by the equation

∆λ = 
ρb

√(E0
′ )2 + (F0

′ )2
 , (12)

where E0
′  and F0

′  are, respectively, the derivatives of the real and imaginary parts of the reduced input resistance of
the system for the selective values of its parameters.

Using the relations (6) obtained for E and F, we will have

∆λ
ρb λ0

 = 
sinh (4πx0y0 − ln r2)

πx0
 , (13)

where x0 = l0n0
 ⁄ λ0 and λ0, l0, n0, and y0 are the selective values of the wavelength, the layer thickness, the refractive

index, and the dielectric loss factor of the substance layer.
When the values of N are high, we can disregard the quantity ∆ in Eqs. (9) for x0 because of its smallness

as compared to N and can use the approximate equation

∆λ
ρb λ0

 = 
4 sinh [π (2N − 1) y − ln r2]

π (2N − 1)
 . (14)

In the particular case where the material of the separating dielectric layer does not absorb electromagnetic ra-
diation we have y0 = 0, ∆ = 0, and the fulfillment of the following conditions of optics with an anti-reflection coating:
l0 = (2N − 1) λd

 ⁄ 4 and n = √ n1n2  [4]. Then Eq. (3) is reduced to the form

∆λ

ρb λ0

 = 
8n0

π (2N − 1) (n0
2
 − 1)

 , (15)

which coincides with the equation obtained in [5].
If we use metal as the substance of the second medium, we obtain n2 → ∞ and r2 → 1. As a result, Eq. (13)

yields the relation

∆λ
ρb λ0

 = 
sinh [4πx0y0]

πx0
 , (16)

which coincides with the equation obtained in [3] for the absorption band of a wave incident on the two-layer system
dielectric–metal.

Equations (7)–(16) determine the existence conditions and the band of reflectionless transmission of electro-
magnetic radiation by the absorbing dielectric layer irrespective of the dielectric properties of the media separated by
it. For convenience of presentation of the results obtained we have considered two variants of solution of Eqs. (7)–(16)
which correspond to the transmissions of the wave by the layer from an optically less dense medium to a denser me-
dium: the direct variant of the problem for n1 < n2 and the inverse variant for n1 > n2.

Figure 1 shows the relationships between the reduced values of the relative transmission band of the wave
∆λ ⁄ ρbλ0 and the selective values of n, n1, and n2 of the substances of the absorbing layer and the media adjacent to
it, which are calculated by Eqs. (13)–(16). The dependences are given for the first two zero minima of the function
ρ(l) respectively for the direct (a) and inverse (b) variants of consideration of the problem of transmission of the wave
by the layer. In constructing them, we have used the relative values n ⁄ n1 and n2

 ⁄ n1 (see Fig. 1a) and n ⁄ n2 and
n1

 ⁄ n2 (see Fig. 1b). The obtained dependences exist in the intervals of variation of the quantities n, y, n1, and n2 for
which the conditions of reflectionless transmission of the wave by the absorbing layer determined by Eqs. (7) and (8)
can be fulfilled. These intervals are respectively (0, nb

 ⁄ n1) for the direct variant and (nb
 ⁄ n2, ∞) for the inverse variant
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of solution of the problem of transmission of the wave by the absorbing dielectric layer. The boundary value is nb =
√ n1n2  and it is determined from the condition of making the nonabsorbing separating layer anti-reflecting [4].

When electromagnetic radiation from an optically less dense medium is transmitted to a denser medium (direct
variant of solution of the problem), the value of the relative absorption band ∆λ ⁄ λ0 decreases with increase in N and
in the ratio n2

 ⁄ n1 for the prescribed selective values of λ0 and l0. The value of the band increases with n and passes
through the maximum near n = n1. The position of this maximum depends weakly on N and the relation between n1
and n2 (see Fig. 1a). For a prescribed N the dependences obtained are bounded in the coordinate plane by the limiting
curves shown dashed in Fig. 1a. Of them, the lower curve, described by Eq. (15), corresponds to the case where a
metal substrate has been used as the second medium, while the upper curve, described by Eq. (16), corresponds to the
case of the absence of absorption in the substance of the separating layer (y = 0). Thus, the value of the absorption
band in the system in question is always higher than that in the case of deposition of the separating layer on the metal
substrate but it is lower in the absence of absorption in this layer. These differences become smaller as the selective
values of n increase and the compared curves themselves in the limit asymptotically approach each other for high val-
ues of n.

The dependences of the relative absorption band on n and N are also similar in character in the case where
electromagnetic radiation is transmitted by the layer from the optically dense medium to a less dense medium (inverse
variant of solution of the problem). The value of the band decreases with increase in N and in the ratio n1

 ⁄ n2. The
value of the band increases for high values of n and passes through the maximum near n = n1 (see Fig. 1b). The po-
sitions of this maximum depend weakly on N and the relation between n1 and n2. However, unlike the results of so-
lution of the direct problem, for a prescribed N the dependences of ∆λ ⁄ ρbλ0 on n ⁄ n2 obtained for the inverse problem
lie higher than the limiting curves corresponding to the particular case of the absence of absorption in the separating
layer. These differences are significant when n = n1; they become smaller with further increase in n, and the compared
curves themselves asymptotically approach each other for high values of n.

The regularities established in determining the conditions and the frequency band of reflectionless transmission
of electromagnetic radiation by an absorbing layer can be applied to the creation of narrow-band absorbing devices of
optical and high-frequency wave ranges.

NOTATION

l, thickness of the separating absorbing layer; N, number of the zero minimum of the reflected wave; Z0, Z,
Z1, and Z2, wave resistances of vacuum and of the substances of the absorbing layer and the adjacent media; ρ

.
 and ρ,

Fig. 1. Relationships between the values of the relative band of quenching
∆λ ⁄ λ0 of electromagnetic radiation and the selective values of the refractive
indices n, n1, and n2 of the absorbing layer and the media adjacent to it re-
spectively in the case of reflectionless transmission, by the absorbing layer, of
the wave from an optically less dense medium to an optically dense medium
(a) and from an optically dense medium to a less dense medium (b) (dashed
curves, y = 0; dash-dot curves, metal substrate): a) 1) n2

 ⁄ n1 = 2 and 2) 4; b)
1) n1

 ⁄ n2 = 2, 2) 4, and 3) 8.
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complex value and modulus of the reflection coefficient of the wave respectively; ρb, the same at the boundary of the
band of selective transmission of the wave; ∆λ, band of selective transmission of the wave; γ, propagation constant of
the wave in the substance of the absorbing layer; n, y, ε′, ε′′ , and δ, refractive index, dielectric loss factor, permittivity,
dielectric loss, and dielectric loss angle of the substance of the absorbing layer; n1, n2, ε1, and ε2, refractive index and
permittivity of the materials of the media adjacent to the layer; λ and λd, wavelength in vacuum and in the absorb-
ing-layer substance. Subscripts: 0, for the cases of reflectionless transmission of electromagnetic radiation by the ab-
sorbing layer; in, input; d, dielectric; b, boundary value.
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